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PART I. FUNDAMENTALS OF THE
BOUNDARY ELEMENT METHOD

Aim:

The main aim of Part I is to provide an introduc-
tion to a numerical method for solving (linear)
partial differential equations (PDEs), namely,
the boundary element method (BEM). This
method recasts the PDE as a boundary integral
equation which is solved numerically.

Advantages:
e It reduces the dimension of the problem by
one, i.e. it discretises only the boundary of the

solution domain, e.g. curves instead of surfaces
in 2D, surfaces instead of volumes in 3D.

e More precisely, it gives the solution of the PDE
explicitly, without the need to interpolate onto
grid discretisation cells as required by other do-
main discretisation methods such as the finite-
difference method (FDM) or the finite element
method (FEM).

Disadvantage:
e Mainly restricted to linear PDEs.

1.1 Partial Differential Equations

Many practical problems in engineering and sci-
ence are mathematically modelled by partial dif-
ferential equations of the form

Lu(@) =0, @€, 1)

where L is a partial differential operator, such as
d 2

the Laplace operator L = V2 = A = %7
T

j— (2
Q C R” is the solution domain, d is thé &imen—
sion of the problem, e.g. d € {1,2,3}, and u is
the solution depending on the position p. Usu-
ally, the governing Eqn. (1) has to be solved
subject to initial, boundary or other conditions.
This mathematical model for a physical phe-
nomenon should be then investigated to estab-
lish if it is well-posed, i.e. whether there is
a unique solution, which in addition is continu-
ously dependent (stable) on the input data, e.g.
initial and/or boundary conditions. The stabil-
ity of the solution is regarded as requiring small
perturbations in the input data to cause only
small (comparable) errors in the output data.
If any of the above three conditions is violated
then the problem is called ill-posed in the
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classical sense of Hadamard, see Hadamard
[1]. If the uniqueness of the solution is ensured,
but either the existence or stability of the so-
lution is violated then the problem is called ill-
posed in the sense of Tikhonov, see Tikhonov
and Arsenin [2].

In this lecture we will consider only ill-posed

see Jaswon and Symm [3],

Gz, x')

— gk /T = )7+ (o2 = af)?
= G('rlvva'rlamZ):

—Q%In|a:—a:'|

()

where x and @' have the coordinates (x1,x2)

problems for which both the existence and unique- and (z7, x5), respectively.

ness of solution are ensured, but the stability has
to be overcome.

1.2 Integral Equations

The basic idea of the BEM is to multiply Eqn.
(1) by an arbitrary function v and integrate “by
parts” over 2. Then the following general in-
tegral equation is obtained:

/7 u(z) L*(v(z)) d(z)
+ f R(u(x),v(z)) dS(w),
o2

0 =/ v(xz) L(u(x)) d(x)

(2)

where 0f) is the boundary of Q, L* is the adjoint
operator of L (analogous to the transpose of a
matrix) defined as < v, L(u) >=< u,L*(v) >
for all u, v in some appropriate space of func-
tions, and R(u,v) is a boundary operator which
can easily be identified for a particular operator
L. For example, when L = V? then:

L* :VZ7
Rlu(@), (@) = v(@) 2 — u(w) %),

(3)

where v, is the outward normal at = € 0 and
use has been made of Green’s identities.
Next, the BEM aims to eliminate the domain
integral over  in Eqn. (2). In order to do this,
we introduce the concept of a fundamental so-
lution for Eqn. (1).

1.3 Fundamental Solutions
A function G is called a fundamental solution
for Eqn. (1) if

Lr (G($7 $I)) = _6(:177 371)7 (4)
where d is the Dirac delta distribution which is
zero everywhere except at * = ' where it is
infinite.
In the case of the Laplace equation L(u(x))
V2u(xz) = 0, using Eqns. (3) and (4) we can
obtain the simplest fundamental solution in 2D,

1.4 Boundary Integral Equations
If we take v = G in Eqn. (2) and use Eqn. (5)
then we obtain

/'wamawwwdﬂf»mem
1519
(6)

where use has been made of the fundamental
property of the § function, namely,

x € (.

u(z), (7)

/ 5, &' )ulz') dS(z') =
Q

Now based on the limiting process of letting « be
a point at the boundary 02, commonly used in
potential theory, see Symm and Pitfield [4], the
following general boundary integral equa-
tion can be obtained:

n(@)u(z) /'wamawwwdﬂfx
_ o0
e Q=0U00Q,

(8)
where n(z) = 1if x € Q and n(x) = v(x)/27
if x € 092, where () is the angle between the
tangents at 02 at either sides of the point .
Note that if & is not a corner then v(x) = .
As an example for the Laplace equation, using
Equs. (3), (6) and (8) we obtain the boundary
integral equation

v = o
/@ LG(m,w') g(j) — u(z') 8(215”) ds(z'),
x € (.

1.5 Numerical Discretisation
In practice, boundary integral equations such
as (8) or (9) can rarely be solved analytically,
therefore some form of numerical approximation
is necessary. In order to numerically solve Eqn.
(9), we use the following discretisations:
(i) The boundary 9 is discretised into small
boundary elements, I'; for j =1,..., M,
M
namely, 02 = U I'j, e.g. I'; are usually straight
j=1
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lines if 2 is a 2D domain.

(ii) Over each boundary element I'; for j =
1,...,M, u and Ou/0v are assumed usually to
be constant and take their value at the centroid
(node) z7, e.g. midpoint in 2D, of I';, namely,

u(z') = u(z?) = uy, z' ey,
! J 10
du(@') _ du(a’) _ aery (10)
Vgt Vg! J
Then the boundary integral Eqn. (9) can be

approximated as:

M J—
n(z)u(x) = ' [A](m)u; + Bj(ac)uj] ,x €,
= (11)
where
AJ(m) :/F G(maml) drj(ml)a
i / (12)
Bj(z) = —/F‘ % dr; (z').

These integrals can be evaluated exactly for
straight-line boundary elements, see e.g. Symm
and Pitfield [4].

(iii) Taking € = x for i = 1,..., M in Eqn.
(11), we obtain a system of linear equations,
namely,

M
> [Aijuf + Biju;] =0,i=1,...,M, (13)

Jj=1
where

Ay = Aj(x), Bij = Bj(x') — n(x")s;;, (14)

where §;; is the Kronecker delta symbol which
isOifi#jand 1ifi=yj.

(iv) Boundary conditions that are associated with
the Laplace equation are usually of the Robin
type, namely,

Ou(x)
Ovg

x € 01,

(15)
where ¢, ¢; and f are usually prescribed func-
tions. Taking ¢ = x’ for i = 1,..., M in Eqn.
(15), we obtain

co(z)u(z) + c1()

f(),

co(xu; +ci(x )l = f(x), i=1,..., M.
(16)
Now, Eqns. (13) and (16) form a system of 20
equations with the unknowns u; and u} for i =
1,..., M, which in principle can be solved us-

ing a Gaussian elimination procedure. Finally,

note that once u; and u} for i = 1,..., M are
obtained then the discretised version (11) of the
boundary integral Eqn. (9) gives the solution
u(x) at any point x inside the domain .

PART II. INVERSE PROBLEMS

I1.1 Fundamentals of Inverse Problems
In direct problems, “the cause determines the
effect”, such that if we know a matrix C and a
vector & then we can easily find the vector

b=Crz. (17)

In inverse problems, “the effect determines
some cause”, such that if we know a matrix C
and the vector b then how we can find the vec-
tor x from Eqn. (17)?

The main difficulty associated with inverse prob-
lems is that in general they are unstable, i.e. the
matrix C' is usually ill-conditioned such that a
straightforward inversion of Eqn. (17) given by
& = C~'b produces highly oscillatory and un-
bounded results. As an example let us now con-
sider the following inverse problem.

II.2 A Cauchy Problem for the Laplace
equation

The inverse problem investigated in this section
requires finding the data w(0,y) and —u;(0,y)
for the following test boundary value problem:

Viu(z,y) =0, (z,y) € 2=(0,1)x (0,1)

u(z,0) = 2%, wu(z,1)=2?-1, z€]0,1]

u(07y):1_y27 u(lay):27 yE [07 1]
(18)

Mathematically speaking, this problem as pro-
posed by Hadamard in 1923 was beyond Dirich-
let’s thoughts that the physics may encounter
applications in which the data in not uniformly
distributed over the boundary as shown above.
On the other hand, there are many practical ap-
plications in steady heat conduction in which
the boundary « = 0 is heated to a very high
temperature and then the measurements of the
temperature u(0,y) with sensors or thermocou-
ples attached to it may become difficult to de-
termine.
It can easily be seen that the Cauchy problem
above possesses the solution
u(z,y) = 22 —y°. (19)
Let us now perturb the data u(1,y) on the over-
specified boundary z 1 by a small amount
sin(kmy)/k, where k is a large natural number.
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Then the Cauchy problem for the Laplace equa-
tion with the perturbed data

a(1,y) = 1 —y? + sin(knwy) /k, (20)

instead of u(1,y) = 1—y?, possesses the solution

U(x,y) = 2° — y* + sin(kny) cosh(kn (1 — z))/k,

(21)
which becomes unbounded for 0 < z < 1 as
k — oo. From this example it can be seen that
as k — oo, whilst the difference between the in-
put data u(1,y) and u(1,y) becomes vanishingly
small, the difference between the required out-
put data w(0,y) and u(0,y) becomes infinitely
large with high and unbounded oscillations oc-
curring. Hence the solution is unstable and, con-
sequently, the Cauchy problem for the Laplace
equation is ill-posed. Therefore, some sort of
regularization is necessary in order to overcome
this instability.

I1.3 Regularization Methods

The Cauchy problem for the Laplace equation
setup in Section II.2, has been solved numeri-
cally in Zeb et al. [5] using the BEM described in
Part I, as a direct solution procedure, for obtain-
ing the generically written system of Eqns. (17).
However, instead of solving the ill-conditioned
system of Eqns. (17) by an unstable inversion
x = C™'b, we use a stable regularization method
given by the minimization of the Tikhonov func-
tional, see Twomey [6],

T\(z) = (Cxz — b)"(Cx — b) + A\(Rz)" (Rx),

(22)
where
1 0
Tp _
RR=|(01 (23)
(zeroth-order regularization)
1 -1 0 0
e | -1 2 -1 0
RR=\ g 1 2 _1 (24)
(first-order regularization)
1 -2 1 0 0
-2 5 -4 1 0o .
RFR=| 1 -4 6 -4 1 0
0 1 -4 6 -4 10

(second-order regularization)

and A > 0 is a regularization parameter (La-
grange multiplier) whose choice can be based on:

(i) The Discrepancy Principle, see Morozov
[7];

(ii) The Cross-Validation Principle, see
Wahba [8];

(iii) The L-curve Principle, see Hansen [9].

Corresponding to Eqns. (23) — (25) via Eqn.
(22), the regularization method imposes conti-
nuity, i.e. class CY, first-order smoothness, i.e.
class C', or second-order smoothness, i.e. class
C2, for the solution z.

Minimising the Tikhonov functional T we ob-
tain the solution x depending on A, namely,

—1
Ty = (CTC + ,\RTR) CcTb.  (26)

PART III. AN APPLICATION TO
ELASTICITY

In this section we give a practical application of
an inverse problem in elasticity solved using the
BEM, see Marin and Lesnic [10] for more details.

II1.1 Mathematical Formulation

We consider an isotropic linear elastic material
which occupies an open bounded domain Q2 C
R? and assume that the boundary I' = 99 is
smooth in the sense of Liapunov such that Green’s
formula is applicable, see Kellogg [11]. In the ab-
sence of body forces, the equilibrium equations
written with respect to the displacement vector
u(x) may be recast in the form of the Lamé
equations, see Saada [12], namely

Gazui(m)
6.27]‘6.27]‘

G  O*uj(z)
1—-2v 6.27@8.27]

=0, z e, (27)

where the constants G and v are the shear mod-
ulus and the Poisson ratio, respectively.
We now let n(x) be the outward normal vector
at T' and ¢(x) be the traction vector at a point
x € I whose components are defined by

t@((IT) = O'ij(:E) n]‘((IT), xel, (28)
where o;(x) is the stress tensor. In the direct
problem formulation, the knowledge of the ma-
terial constants G and v, the location, shape and
size of the entire boundary I', and the traction
and/or displacement vectors on the boundary

I" gives the corresponding Neumann, Dirichlet,
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or mixed boundary problems which enable one
to determine the displacement vector u(x) in
the domain 2. A different and more interest-
ing inverse situation occurs when a part of the
boundary I' is unknown and some additional in-
formation is supplied on the remaining part of
the boundary. More specifically, we analyse the
following problem:
Find the boundary I's C I" such that the displace-
ment vector u satisfies the Lamé equations (27),
either Dirichlet or Neumann boundary condi-
tions are given on I's, with the mention that
the traction field on s is assumed to be con-
servative, and the displacement and the traction
vectors, i.e. Cauchy data, are known on the
remaining part Ty = T \ 'y of the boundary,
namely

u(x) =u(x) and t(x)

=t(z), €Ty, (29)

w(x) = u(x) or t(x) =t(x), x € Ty. (30)

I11.2 Boundary Element Method

The Lamé system (27) can be formulated in in-
tegral form with the aid of the Second Theorem
of Betti, see Saada [12], namely

%@mm+£wmmmm£@

=A%mmmwﬂ@,wdi

(31)
where the first integral is taken in the sense
of the Cauchy principal value, Cj;(x) = 1 for
x € Qand Cjj(x) = 1/2 for & € T (smooth),
and U;; and Tj; are the fundamental displace-
ments and tractions, respectively, for the 2D
isotropic linear elasticity, see e.g. Brebbia et
al. [13].

Since the integral equation (31) cannot, in gen-
eral, be solved analytically, the boundary I" of
the solution domain 2 is discretised in an anti-
clockwise direction into IV continuous linear
boundary elements ', K =1,..., N, having

) and
K+l = (xf“ :vf“), K=1,...,
Nt =

the endpoints z¥ = (mf(,mf
N, where

x°. On applying the continuous linear
BEM approximation in which the unknowns u;
and t; are assumed linear over each boundary

element 'k, we obtain

u;i(y) et N
B @R —y Iy —aX]
= uj(x 2K k] + uj( )|$K+1 2K
+1 K
_ T Yy K+1_ |Yy—x
:uf||$K+1_ Il|+uj+ |w|K+1_$|K|7
y €k
(32)
ti(y) K+1 K
_ r Yy y—x
=tj(z JEKH K|| +t](mK) |K+1 $|K|
g 2yl ek ly — "
— Y3 |$K+1 $K| 7 |$K+1 mK|7
yelk.
(33)
Thus relation (31) recasts as
2 N 2
S Cut@us(a) + D2 3 A8 @l
j=1 K=1j=1
N 2 N B (34)
-3 Y B,
K=1j=1
i=1,2, L=1,...,N, z€Q

Here N, is the number of boundary elements on
I'1, Ns is the number of boundary elements on
[y, N = N1+ Ny, and the functions AfS () and
Bg(m), i,j=1,2, K=1,...,N, depend on the
geometry of the boundary I' and may be eval-
uated analytically, see Marin et al. [14]. Col-
locating equation (34) at each boundary node

i, L = 1,...,N, we arrive at the system of
equations
N 2
AKL K BKLtK) —0
> > ( o 35)
K=1j=1
1=1,2, L=1,...,N

) ) )

where Afj(-L and BgL, i,j = 1,2 and K,L =
1,..., N, are given by

KL K
A%/Aﬁg

II1.3 Description of the Algorithm
It should be noted that the unknown bound-
ary ['s is completely determined by the vector

X = (ach“‘z,...,acN)T e RBNV2-1) je T, =
['y(X). If we consider the discretised BEM sys-
tem (35) recast as the solution of a direct prob-

lem with boundary conditions (295) and (30;),
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namely

Ni41 2

Z ZAKL K _ Z ZBKLtK
K=1 j=1 K= N1+21 1

Nit1l 2 (37)

Z ZBKL"”K Z ZAKL~K
K=1 j=1 K=N;1+2j=1
1=1,2, L=1,...,N,

then the calculated displacements u]K , 7 =12

and K =1,...,(N; +1), on the known bound-
ary 'y and tractions ¢, j = 1,2 and K =
(N1 +2),...,N, on the unknown boundary I'y

are functions of the unknown parameters given
by the vector X, i.e.

uJK:uJK(X),j:LQ, Kzl,...,(N1+1),
(38)
(39)

The numerical scheme proposed in this study
is based on the minimisation of the Tikhonov
functional
Fal) : R2NV2=1) 10, 00)
FA(X) = Fllut™™ (X)|p,
N

+A Z [

K=N:+1

—u’|p, 113 (40)

K12
12

with respect to the vector
T
X = (mN1+2, . acN) e R2(Nz2—1),

provided that an initial guess X(© € R2(WVz2—1)
is given, where A > 0 is a regularization param-
eter to be prescribed, ,
u(num) (X)|F1 — (ul (X), o ,uN1+1 (X)) ,
uk(X) = (ulf(X),ul (X)), K =1,..., (N +
1),

is the vector containing the calculated values of
the displacement vector on I'y and 175|F1 rep-
resents a noisy measurement data for the exact
data @|p, -

Numerically, the objective functional (40) is min-
imised using the NAG subroutine E0O4UPF, which
is designed to minimise an arbitrary smooth sum
of squares subject to constraints. This may in-
clude simple bounds on the variables, linear con-
straints and smooth nonlinear constraints. Each
iteration of the subroutine includes the follow-
ing: (a) the solution of a quadratic program-
ming subproblem; (b) a line search with an aug-
mented Lagrangian function; and (c) a quasi-
Newton update of the approximate Hessian of
the Lagrangian function, for more details see

Gill et al. [15]. The gradient of the objective
functional (40) has been calculated using for-
ward finite differences with a step of 1073 which
was found to be sufficiently small that a fur-
ther decrease in this value does not affect signif-
icantly the accuracy of the numerical results.

II1.4 Numerical Results and Discussion
In this section, we consider the case when the
unknown boundary I's is the graph of an un-
known function f : [-R,R] — R, R > 0, tak-
ing the zi-axis to pass through the endpoints
f(=R) = f(R) = 0 and fixing the origin at
1 = 0. Therefore, the endpoints of the bound-
ary elements 'k on I's will have the known
equally-spaced z;-coordinates zX = R(2K —2—
N—N;)/(N—N;) for K = (N1 +1),...,(N+1).
Furthermore, since f(—R) f(R) = 0, the
functional (40) will depend on only (N, — 1)
unknowns, namely mN1+Z, .., oY, where x&
f(xE) for K = (N; +2),...,N. Consequently,
the functional (40) has the following form:

Fa(-) : R¥>71 — [0, 00)
fA( )

@ Ip, I+ AIXI3

-1y Y (uJK(X) - @K)E)2 +A[(x§1+2)2
) )]
(41)

where we have stopped penalising the x; — coor-
dinates in the norms [|z®*! — xX||2 since they
are known. It should be noted that the zeroth-
order regularization procedure based on penal-
ising the norm of the solution X, rather than
its derivative X', did not produce sufficiently
accurate and stable numerical results and this
conclusion is in accordance with the results ob-
tained by Peneau et al. [16] and Lesnic et al. [17]
who have solved a similar problem for the Laplace
equation. Therefore, the assumption of smooth-
ness of the numerical solution for T'y, as given
by the first-order Tikhonov functional (41), is
essential in order to obtain an accurate and sta-
ble numerical solution. Alternatively, instead
of employing the functional (41), one may pa-
rameterise the unknown boundary I's with var-
ious approximating functions and the problem
reduces to determining the coefficients of the ap-
proximation, see Birginie et al. [18].

We solve the inverse problem in the following 2D
smooth geometry for an isotropic linear elastic
medium characterised by the material constants
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G = 3.35%x10'° N/m? and v = 0.34 correspond-
ing to a copper alloy:

Example. We consider the domain 2 which is
bounded by the following curves

o + 2} = R?
—R<z1 <R, 0< 2
(42)

I = {(ll?l,lvg)

I, =C\I,

{(11717:1?2)

U{(Z’l,l'g)
U{(Z’l,l'g)

(z1 + 3R/4)? + 23 = (R/4)?

—R<.Z’1<—R/2, Ty <0 }

z? + 13 = (R/2)*

—R/2<x1 <R/2,0<

(z1 —3R/4)? + 23 = (R/4)?

R/2<x1 <R, 22 <0 }
(43)

such that the following tractions act on its bound-

ary I’

(an) _J o0, eIy
@) = { 0, zely (44)
téan) (&)= 0, zel Uly,

where 0o = 1.0 x 10!° N/m?. It should be
noted that the analytical expressions for the dis-
placement vector u®") (z) corresponding to this
example are not available. However, these can
be obtained by solving the following Neumann
problem

Fult @) g Pui (@) _
C w0, TT-2 00z, -~ TEQ
1% (x) = g9, (@) =0, zeT,
£ (z) = t8(2) =0, z € Ty

(45)
and eliminating the rigid body displacements ac-
cording to the formulae

u(x) x ¢ dQ(x) = 0.

J
(46)

In a similar manner, we may create boundary
data which is exempt from any numerical noise
even when analytical expressions for the dis-
placement and the traction vectors are avail-
able and, in what follows, they will be referred
to as “exact data”. Hence the inverse problem
under investigation is given by equations (27),
(29) and (30;) in which the input traction data
ﬂl"l = ¢(@n) |, is given by relation (44) and the

(@) dAz) =0, /

Q

input displacement data |y = w®|p is given
by solving numerically the Neumann problem
(45) with the traction boundary condition given
by relation (44).

The numerical results presented in this section
have been obtained using a discretisation of the

boundaries I', I'y and I's with N; = Ny = 20
boundary elements, such that N = N1+ N, = 40
boundary elements. These values were found to
be sufficiently large such that any further re-
finement of the mesh size did not significantly
improve the accuracy of the results.

Exact data is seldom available in practice since
measurement errors always include noise in the
prescribed boundary conditions. In order to in-
vestigate the stability of the numerical method
proposed, the boundary data 17|F1 has been per-
turbed as

dlp, = lp, + o,

5u; = GO5DDF(0, 0;), (47)
o1 = max |2

where du; is a Gaussian random variable with
mean zero and standard deviation o;, gener-
ated by the NAG subroutine GO5DDF, and p €
{1,2,3} is the percentage of additive noise in-
cluded into the input data @|p, in order to sim-
ulate the inherent measurement errors.

In the inverse analysis of retrieving the unknown
boundary T's, the initial guess X e R2(WVz2—1)
for the minimisation of the objective functional
(41) has been taken, for simplicity, to be zero.
In order to study the convergence of the numer-
ical method employed, we consider the accuracy
error defined by

Ex =X\ — X)), (48)

where X (¥ and X, are vectors containing the
exact and the numerical values corresponding to
a specified value of the regularization parameter
A for the coordinates of the unknown boundary
Iy, respectively. Figure 1 presents the accuracy
error Ex defined by relation (48), as a function
of the regularization parameter A obtained for
various levels of noise added into the input dis-
placement data 17|F1. From this figure it can be
seen that for the error Ex to attain its minimum
requires the optimal value A,p; of the regulariza-
tion parameter A to be chosen when using the
Tikhonov regularization method and this will be
discussed later. Moreover, the minimum value
of Ex decreases as the noise added into the in-
put data decreases.

The error which measures the least-squares gap
defined by

Ey = |[u®™™(X)[p, —u®p, [l2,  (49)
where u(an)|F1 and w (™) (X )|, are vectors
containing the analytical and the numerical val-
ues corresponding to a specified value of the
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regularization parameter \, respectively, for the
components of the displacement vector at the
nodes on the known boundary I'y, has a qual-
itative behaviour similar to that of the error
Ex. Figure 2 shows the error F, as a func-
tion of the regularization parameter A obtained
for various amounts of noise added into the in-
put displacement data 17|F1. From this figure it
can be seen that the error F, decreases as the
level of noise added into the input displacement
data decreases for all the values of the regular-
ization parameter \. Furthermore, for all the
amounts of noise added into the displacement
data u|p , the error E, decreases down to a
constant value as the regularization parameter
A continues to decrease. By comparing Figures
1 and 2, it can be seen, for various levels of noise,
that the corner corresponding to the beginning
of the constant region in the error E, occurs at
about the same value of the regularization pa-
rameter A where the minimum in the accuracy
error Ex is attained.

1.0

0.7+

0.4

0.07+

T T T T T T T T 1
10" 10° 10° 107 10° 10° 10" 10° 10 10"
Regularisation parameter A

Figure 1: The error Ex = || X — X®9||5, as a
function of the regularisation parameter .

In the functional (41), the choice of the optimal
regularization parameter A = A\, is essential in
order to achieve the stability on the numerical
solution. In this study, we have used an L-curve
type criterion, see Hansen [9], which plots on
a log-log scale the least-squares gap, i.e. the
error E, = ||u(““m)(X)|1—\1 - u(a“)|F1||2, ver-
sus the norm of the derivative of the solution,
[|X'|]2, for various values of the regularization
parameter A\. In Figure 3 we present the L-
curve plots obtained for various levels of noise
added into the input displacement data 17|F1,
namely p € {1,2,3}. The optimal values, Aop,

*10™

40—

20

Error E,

27 T T T T |
10" 10° 10° 107 10° 10° 10* 10° 10 10°

Regularisation parameter A

Figure 2: The error E, = ||u(m“n)(X>\)|1—\1 -

u(a‘1)|rl||2, as a function of the regularisation
parameter .

of the regularization parameter, A, are chosen
at the corners of these curves in order to bal-
ance the under-smooth regions, i.e. A too small,
and the over-smooth regions, i.e. A too large.
A more systematic way to find this corner is
to determine the maximum point of the curva-
ture of the L-curve with respect to the regu-
larization parameter, A > 0, for more details
on this method we refer the reader to Hansen
[9, 19]. Alternatively to this heuristical method,
one may use other more rigorous criteria, such
as the discrepancy principle, see Morozov [7],
or the generalised cross-validation principle, see
Wahba [8]. However, Figure 3 illustrates clearly
the L-shaped curves and therefore the L-curve
criterion is applicable. The optimal values, Aypt,
of the regularization parameter, A, obtained for
the example considered in this study are showed
in this figure for various levels of noise added
into the input displacement data 'E|F1.

Figure 4 illustrates the initial guess, the exact
and the numerical values for the unknown bound-
ary I'; obtained using the optimal regularization
parameter A = A, chosen according to the L-
curve criterion and various levels of noise added
into the input displacement data 17|F1, namely
p € {1,2,3}. From Figure 4 it can be seen that
for the example considered the numerical solu-
tions are stable and consistent with the amount
of noise p added into the input data 6|F1 . More-
over, they converge to their corresponding ex-
act targets I'a, given by equation (43), as the
amount of noise p decreases, i.e. as the data er-
rors tend to zero. Thus, the numerical solution
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Figure 3: The L-curves obtained with various

levels of noise added into the displacement data
(an)|

u Fl .

is convergent to the exact solution.

X,

exact

M- p=1%
“A- p=2%
- p=3%

=== guess

03 T T T 1
-1.0 05 0.0 0.5 1.0

X,

Figure 4: The exact (—), the initial guess
(= =) and the numerical solution for the un-
known boundary I's, obtained with various lev-
els of noise added into the displacement data
u(an)|1_‘1'

Figure 5 shows the iterative convergence pro-
cess for the unknown boundary I's as the initial
guess moves towards the target when obtained
for p = 1% noise added into the displacement
data 'E|F1, A = Aopt according to the L-curve
criterion and various numbers of iterations per-
formed. It can be seen from this figure that
the numerical results for the unknown bound-
ary given by equation (43) are reasonable ap-
proximations of their exact value after a small
number of iterations, e.g. k = 20 iterations. It
should be noted that the final numerical results

for the unknown boundary (43) are obtained af-
ter kopt = 39 iterations.

0.5
0.4+
0.3 exact
F === guess
@ k=1
0.2 <A k=5
A - k=10 N
H -3+ final :
X 014 :

0.0 B -~ RP---—----------------
-0.1-}

02+ R0

03 T T T 1

Figure 5: The iterative convergence process for
the unknown boundary I'; as the initial guess
(— —) moves towards the target (—), obtained
for p = 1% noise added into the displacement
data u(®) |F1 and various numbers of iterations
performed.

The importance of the choice of the optimal reg-
ularization parameter A,y is illustrated in Fig-
ure 6 which presents the exact values in compar-
ison with the numerical solutions corresponding
to different values of the regularization parame-
ter, namely A < Agpt, A = Aope and A > A,py, for
the unknown boundary given by relation (43).
From Figure 6, it can be seen that if the regu-
larization parameter A is taken to be too small
then it produces oscillatory numerical solutions
which are dominated by the contributions from
the data errors, whilst if the regularization pa-
rameter A is taken to be too large then it pro-
duces oversmooth numerical solutions which do
not fit the given data, as discussed before.
Overall, from the numerical results presented in
this section it can be concluded that the numer-
ical method proposed for detecting an unknown
part of the boundary of a solution domain occu-
pied by an isotropic linear elastic medium pro-
duces a convergent and stable approximate solu-
tion with respect to decreasing the level of noise
added into the input data.
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